
Steve S. answered 01/31/14
Tutor
5
(3)
Tutoring in Precalculus, Trig, and Differential Calculus
P(x) = x^4 - 2x^3 - 6x^2 - 4x - 16
The numerator of any rational zero must be a factor of -16 and the denominator a factor of 1.
So if there is a rational zero it will be in this set: ±1, ±2, ±4, ±8, ±16.
±1 don't work by inspection.
2 | 1 -2 -6 -4 -16
2 0 -12 -32
1 0 -6 -16 | not zero
-2 | 1 -2 -6 -4 -16
-2 8 -4 16
-2 8 -4 16
-2 | 1 -4 2 -8 | 0 = P(-2)
-2 12 -28
1 -6 14 | not zero
4 | 1 -4 2 -8
4 0 8
1 0 2 | 0 = P(4)
4 0 8
1 0 2 | 0 = P(4)
P(x) =(x+2)(x-4)(x^2 + 2)
x^2 + 2 = 0
x^2 = -2
x = ±i√(2)
So the real roots are x = -2, 4
check:
P(x) =(x+2)(x-4)(x^2 + 2)
= (x^2 - 2x - 8)(x^2 + 2)
= (x^2 - 2x - 8)(x^2) + (x^2 - 2x - 8)*2
= x^4 - 2x^3 - 8x^2 + 2x^2 - 4x - 16
= x^4 - 2x^3 - 6x^2 - 4x - 16 √