a) 2sin2x - 3sinx - 2=0
pretend that sin(x)=x, then the above equation can be rewritten as
2x2 - 3x - 2=0
(2x + 1)(x - 2)
plug sin(x) back into equation:
(2sin(x) + 1)(sin(x) -2)=0
For the case 2sin(x) + 1=0
sin(x)=-1/2
x=210 degrees (7/12 π), 330 degrees (11/12 π) These angles are locates 30 degrees downwards in the direction of the y-axis.
for the case sin(x) - 2=0:
sin(x)=2, no solution exists because -1≤sin(x)≤1.
x={7/12 pi, 11/12 pi}
b) cos2x = cotx sinx
cotx=cos(x)/sin(x), so
cos2x = cotx sinx is also cos2x = (cosx/sinx) sinx
sin(x) terms cancel each other
cos2x=cosx
cos2(x) - cos(x)=0
factor out cos(x):
cos(x)(cos(x) - 1)=0
when cos(x)=0
x=90, 270 degrees.
(positive and negative directions of the y axis)
when cos(x) -1=0
cos(x)=1
x=0, 360 degrees (positive x-axis)
answers:
x={0, 90, 270, 360}