A stationary point is a point where the derivative of a function is zero. Hence it will be a local maximum or minimum.
f(x) = x3 + mx2 + nx
Take the first derivative wrt x and set it to zero:
f '(x) = 3x2 + 2mx + n
0 = 3x2 + 2mx + n
Use the quadratic formula to solve for x:
x = (-m±√(m2-3n))/3
Now we are given that x = -4/3 and 2 at the stationary points.
2 = (-m+√(m2-3n))/3
6 = -m+√(m2-3n)
-4/3 = (-m-√(m2-3n))/3
-4 = -m-√(m2-3n)
To find m, add the two equations together:
6 + (-4) = -m+√(m2-3n) + -m-√(m2-3n)
2 = -2m
-1 = m
To find n, substitute m=-1 into either quadratic solution:
-4 = -m-√(m2-3n)
-4 = -(-1) - √((-1)2-3n)
-4 = 1 - √(1-3n)
-5 = -√(1-3n)
25 = 1 - 3n
24 = -3n
-8 = n
f(x) = x3 - x2 - 8x