Yohan C. answered 04/24/16
Tutor
4
(1)
Math Tutor (up to Calculus) (not Statistics and Finite)
Hey Malik,
Rational Root Theorem gives you all the "possible" factors for your polynomial:
(all factors of constant) / (all factors of leading coefficient of highest power)
For yours will be: 15 / 1 f(x) = x3 + 5x2 -2x -15 = 0
all factors of 15 (constant) = (+/-) 1, (+/-) 3, (+/-) 5, (+/-) 15
all factors of 1 (leading coefficient of highest power) = (+/-) 1
So, all your possible rational roots are: (+/-) [1, 3, 5, 15]
(+/-)1, (+/-)3, (+/-)5, (+/-)15
* total of 8 but there are no rational roots for yours.
Good luck to you.
Here are some examples (so you can understand what just happened):
f(x) = 4x5 - 2x4 + 30x3 -15x2 +50x -25
all factors of 25 (constant) = (+/-) 1, (+/-) 5, (+/-) 25
all factors of 4 (leading coefficient of highest power) = (+/-) 1, (+/-) 2, (+/-) 4
All possible rational roots are:
1,5,25
-------
1,2,4
(+/-) 1, (+/-) 5, (+/-) 25
(+/-) 1/2, (+/-) 5/2, (+/-) 25/2
(+/-) 1/4, (+/-) 5/4, (+/-) 25/4
(+/-) [1, 5, 25, 1/2, 5/2, 25/2, 1/4, 5/4, 25/4]
* There are 6 possible rational roots out of total of all 9 roots.
f(x) = 6x4 - 11x3 + 8x2 -11x -30
all possible factors for 30 (constant): 1,2,3,5,6,10,15,30
all possible factors for 6 (leading coefficient of highest power): 1,2,3,6
1,2,3,5,6,10,15,30
-------------------
1,2,3,6
(there will be repeated factors/roots throughout the process for this particular one)
(1/1,2,3,6) (2/1,2,3,6) (3/1,2,3,6) (5/1,2,3,6)
(6/1,2,3,6) (10/1,2,3,6) (15/1,2,3,6) (30/1,2,3,6)
(+/-)[1, 1/2, 1/3, 1/6] (+/-)[2, 1, 2/3, 1/3] (+/-)[3, 3/2, 1, 1/2] (+/-)[5, 5/2, 5/3, 5/6]
(+/-)[6, 3, 2, 1] (+/-)[10, 5, 10/3, 5/3] (+/-)[15, 15/2, 5, 5/2] (+/-)[30, 15, 10, 5]
(+/-) [1, 2, 3, 5, 6, 10, 15, 30, 1/2, 3/2, 5/2, 15/2, 1/3, 2/3, 5/3, 10/3, 1/6, 5/6]
*There are 10 possible rational roots out of all 36 roots.
Ron G.
04/24/16