Search 83,534 tutors
FIND TUTORS
Ask a question
0 0

find the solution to the following equation

Tutors, please sign in to answer this question.

2 Answers

a.  log2(log3x) = 4
 
When:
by = x
Then the base b logarithm of a number x:
logbx = y
 
In this case, then,
 
24 = 16 = log3(x)
 
∴ x = 316 = 43046721
 
b)  ln(x-1)+ln(+2)=1  
 
eln(x-1)+ln(2) = e
 
2(x - 1) = e
 
2x = e + 2
 
x = (e/2) + 1
 
 
 
 
 
x
 
 
a) log2[log3(x)]=4
    2^4=log3(x)
       16=log3(x)
       3^16=x
       x=43,046,721
 
b) ln(x-1)+ln(2)=1
    ln[(x-1)(2)]=1
    2(x-1)=e
    2x-2=e
    2x=e+2
    2x=2.7183+2
    2x=4.7183
      x=4.7183/2
      x=2.35915