Draw 3 counter-clockwise current loops for the circuit given.
I1 starts at E110.4 and passes through R19.2---R2---R6.
I2 starts at E59.4 and passes through R6---R5.5---R3.
I3 starts at R2 and passes through R3---R5.5---R6.
Write the simultaneous equations as
110.4 = 19.2I1 + 2(I1 − I3) + 6(I1 − I3)
59.4 = 6I2 + 5.5(I2 − I3) +3(I2 − I3)
0 = 8(I1 − I3) + 8.5(I2 − I3)
Rewrite these equations as
27.2I1 + 0I2 − 8I3 = 110.4
0I1 + 14.5I2 − 8.5I3 = 59.4
8I1 + 8.5I2 − 16.5I3 = 0
Write a principal matrix for the coefficients of I1, I2, & I3:
27.2----0------(-8)
0-----14.5----(-8.5)
8------8.5---(-16.5)
Write a second matrix where the first column of the
principal matrix is replaced by 110.4---59.4---0:
110.4------0-----------(-8)
59.4-----14.5--------(-8.5)
0----------8.5--------(-16.5)
Calculate the determinant of the principal matrix:
27.2×14.5×(-16.5) − 27.2×8.5.×(-8.5) − 0×0×(-16.5) + 0×8.5×(-8) + 8×0×(-8.5) − 8×14.5×(-8)
comes to -3614.4.
Calculate the determinant of the second matrix:
110.4×14.5×(-16.5) − 110.4×8.5.×(-8.5) − 59.4×0×(-16.5) + 59.4×8.5×(-8) + 0×0×(-8.5) − 0×14.5×(-8)
comes to -22476.
Then I1 is obtained by (-22476/-3614.4) equal to 6.218459495 Ampères.