x = a sinθ - b cosθ
y = a cosθ - b sinθ
x2 + y2 = a2 + b2
x2 = a2sin2θ - 2absinθcosθ + b2cos2θ
y2 = a2cos2θ + 2absinθcosθ + b2sin2θ
x2 + y2 = a2sin2θ - 2absinθcosθ + b2cos2θ + a2cos2θ + 2absinθcosθ + b2sin2θ
x2 + y2 = a2sin2θ + b2cos2θ + a2cos2θ + b2sin2θ
rearranging terms
x2 + y2 = a2(sin2θ + cos2θ) + b2(sin2θ + cos2θ)
Recall that sin2θ + cos2θ = 1
Therefore
x2 + y2 = a2 + b2