2x2 + x + 5 = k(x2 + 2x + 1)
(2-k)x2 + (1-2k)x + (5-k) = 0
Ax2 + Bx + C = 0 has no real roots when the discriminant, B2 - 4AC, is negative.
So, we need to find k so that (1-2k)2-4(2-k)(5-k) < 0
1 - 4k + 4k2 - 4(10 - 7k + k2) < 0
1 - 4k + 4k2 - 40 + 28k - 4k2 < 0
24k - 39 < 0
k < 39/24
So, k < 13/8
Or, equivalently, k < 1.625