
Robert F. answered 08/12/15
Tutor
5
(10)
A Retired Professor to Tutor Math and Physics
A standard integral shown in tables of integrals is:
∫(1/sqrt(x2+a2))dx=Ln[x+sqrt(x2+a2)]
In this case, a2=36
Choice (c) has this form.
The integral can be restated so as to give the form in choice (c), so that is your choice.
∫(1/sqrt(x2+a2))dx=∫(1/sqrt((x/a)2+1))(dx/a)
define w=x/a
dw=dx/a
∫(1/sqrt((x/a)2+1))(dx/a)=∫(1/sqrt(w2+1))dw
This is the integral from the table, above, with a=1, so
∫(1/sqrt(w2+1))dw=LnLn[w+sqrt(w2+1)]=Ln[(x/a)+sqrt((x/a)2+1)]
Ln[(x/a)+sqrt((x/a)2+1)]=Ln[(x/a)+(sqrt(x2+a2))/a]= choice (c)