answer for math questions about parabolas

x^{2 }- 2x + 3 = (x - 1)^{2} + 2

= (x - 1)^{2} - (-2)

= (x - 1 + sqrt(-2)) (x - 1 - sqrt(-2))

= (x - 1 + sqrt(2) * i) (x - 1 - sqrt(2) * i)

answer for math questions about parabolas

Tutors, please sign in to answer this question.

x^{2 }- 2x + 3 = (x - 1)^{2} + 2

= (x - 1)^{2} - (-2)

= (x - 1 + sqrt(-2)) (x - 1 - sqrt(-2))

= (x - 1 + sqrt(2) * i) (x - 1 - sqrt(2) * i)

Parabolas are of the form ax^{2}+bx+c, where a,v and c are the coefficients (numbers) in front of the variable. Notice that all parabolas are of degree 2 (that means the highest power of the variable is 2).

There are three major methods of solving for the roots of a parabola. (roots being the places where the y value will be zero).

1. factor the tri-nomial (three terms) into two binomials (two terms).

2. complete the square (see below)

3. or use the quadratic formula -b + sqrt(b^{2} - 4ac) then divide the whole thing by 2a

for the parabola stated above: y =

x^{2} - 2x + 3 factoing will not be the best way.

completing the square is done as follows:

set the equation = 0. 0 = x^{2} -2x + 3

take the last term (3) and subtract it from both sides which gives you x^{2
}- 2x^{ = }-3

take the coefficient of the 'x' term which is -2, take half of it (-1) square it (1)

add this term (1) to both sides which gives you x^{2} - 2x +1 = -2

NOTICE: you have made a perfect square of the left side which is (x-1)^{2} so....

(x-1)^{2} =-2. Now take the sqrt of both sides which gives you x-1 =+sqrt(-2)

so..... the roots are complex! not real. they are x = 1-i*sqrt(2) and 1+i*sqrt(2)

____________________________________________________________________

NOTE: The vertex or (maximum/minimum point) of the parabola ca be gotten by using the co-ordinate pair (-b/2a,f(-b/2a))

((-2/2),6) or ((-1,6)

____________________________________________

Using the quadratic formula we get -(-2) + sqrt(-2^{2}-4(a)(3) all divided by (2*1)

which gives you 2 + sqrt(4 - 12) all divided by 2

which gives you 2 + sqrt(-8) all divided by 2, which yields 2 + 2i* sqrt(2) alld divided by 2

whihc is 1 + i*sqrt(2) and 1 - i*sqrt(2)

same answer as completing the square!

Sean B.

Premier NYC Math tutor - young, passionate and talented

New York, NY

4.8
(30 ratings)

John Y.

Columbia Math and SAT Specialist

New York, NY

5.0
(315 ratings)

Richard B.

Effective and Experienced Math and Science Tutor and Teacher

South Orange, NJ

5.0
(201 ratings)