
Jonathan T. answered 10/13/22
10+ Years of Experience from Hundreds of Colleges and Universities!
Solve the autonomous equation (d^2 y(x))/(dx^2) = ((dy(x))/(dx))^2 - y(x):
Treating y as the independent variable, let v(y) = (dy(x))/(dx) which gives (d^2 y(x))/(dx^2) = d/(dx) ((dy(x))/(dx)) = (dv(y))/(dx) = (dv(y))/(dy) (dy)/(dx) = v(y) (dv(y))/(dy):
(dv(y))/(dy) v(y) = -y + v(y)^2
Subtract v(y)^2 from both sides:
(dv(y))/(dy) v(y) - v(y)^2 = -y
Multiply both sides by 2:
2 (dv(y))/(dy) v(y) - 2 v(y)^2 = -2 y
Let u(y) = v(y)^2, which gives (du(y))/(dy) = 2 v(y) (dv(y))/(dy):
(du(y))/(dy) - 2 u(y) = -2 y
Let μ(y) = e^( integral-2 dy) = e^(-2 y).
Multiply both sides by μ(y):
e^(-2 y) (du(y))/(dy) - (2 e^(-2 y)) u(y) = -2 e^(-2 y) y
Substitute -2 e^(-2 y) = d/(dy) (e^(-2 y)):
e^(-2 y) (du(y))/(dy) + d/(dy) (e^(-2 y)) u(y) = -2 e^(-2 y) y
Apply the reverse product rule f (dg)/(dy) + g (df)/(dy) = d/(dy) (f g) to the left-hand side:
d/(dy) (e^(-2 y) u(y)) = -2 e^(-2 y) y
Integrate both sides with respect to y:
integral d/(dy) (e^(-2 y) u(y)) dy = integral-2 e^(-2 y) y dy
Evaluate the integrals:
e^(-2 y) u(y) = -2 e^(-2 y) (-y/2 - 1/4) + c_1, where c_1 is an arbitrary constant.
Divide both sides by μ(y) = e^(-2 y):
u(y) = y + c_1 e^(2 y) + 1/2
Solve for v(y) in u(y) = v(y)^2:
v(y) = -sqrt(y + c_1 e^(2 y) + 1/2) or v(y) = sqrt(y + c_1 e^(2 y) + 1/2)
Substitute back for (dy(x))/(dx) = v(y):
(dy(x))/(dx) = -sqrt(c_1 e^(2 y(x)) + y(x) + 1/2) or (dy(x))/(dx) = sqrt(c_1 e^(2 y(x)) + y(x) + 1/2)
For (dy(x))/(dx) = -sqrt(e^(2 y(x)) c_1 + y(x) + 1/2):
Divide both sides by sqrt(e^(2 y(x)) c_1 + y(x) + 1/2):
((dy(x))/(dx))/sqrt(c_1 e^(2 y(x)) + y(x) + 1/2) = -1
Integrate both sides:
integral_1^y(x) 1/sqrt(u + e^(2 u) c_1 + 1/2) du = integral_(c_2)^x-1 du
Evaluate the integrals:
integral_1^y(x) 1/sqrt(u + e^(2 u) c_1 + 1/2) du = -x + c_2, where c_2 is an arbitrary constant.
For (dy(x))/(dx) = sqrt(e^(2 y(x)) c_1 + y(x) + 1/2):
Divide both sides by sqrt(e^(2 y(x)) c_1 + y(x) + 1/2):
((dy(x))/(dx))/sqrt(c_1 e^(2 y(x)) + y(x) + 1/2) = 1
Integrate both sides:
integral_1^y(x) 1/sqrt(u + e^(2 u) c_1 + 1/2) du = integral_(c_2)^x 1du
Evaluate the integrals:
integral_1^y(x) 1/sqrt(u + e^(2 u) c_1 + 1/2) du = x + c_2, where c_2 is an arbitrary constant.
Collect solutions:
Answer: |
| integral_1^y(x) 1/sqrt(u + e^(2 u) c_1 + 1/2) du = -x + c_2 or integral_1^y(x) 1/sqrt(u + e^(2 u) c_1 + 1/2) du = x + c_2