
Victor E. answered 05/09/15
Tutor
5.0
(252)
Math/Physics Tutor
6cos2A – 5sinA – 5 = 0
6(cos2A) – 5sinA – 5 = 0
6(1-sin2A) – 5sinA – 5 = 0 [ recall: cos2A + sin2A = 1 ]
6 – 6sin2A - 5sinA – 5 = 0
0 = -6 + 6sin2A + 5sinA + 5
0 = 6sin2A + 5sinA – 1
0 = 6(sinA)2 + 5(sinA) – 1 [now factor trinomial…]
0 = (6sinA – 1)(sinA + 1)
(6sinA – 1)=0 -OR- (sinA + 1)=0
6sinA = 1 -OR- sinA = -1
A = sin-1(1/6) -OR- A = sin-1(-1)
A = 9.5451°, 170.41° -OR- A = 270°
Thus, A = { 9.5451°, 170.41°, 270° }
6(cos2A) – 5sinA – 5 = 0
6(1-sin2A) – 5sinA – 5 = 0 [ recall: cos2A + sin2A = 1 ]
6 – 6sin2A - 5sinA – 5 = 0
0 = -6 + 6sin2A + 5sinA + 5
0 = 6sin2A + 5sinA – 1
0 = 6(sinA)2 + 5(sinA) – 1 [now factor trinomial…]
0 = (6sinA – 1)(sinA + 1)
(6sinA – 1)=0 -OR- (sinA + 1)=0
6sinA = 1 -OR- sinA = -1
A = sin-1(1/6) -OR- A = sin-1(-1)
A = 9.5451°, 170.41° -OR- A = 270°
Thus, A = { 9.5451°, 170.41°, 270° }