Rachel C. answered 06/04/24
Experienced Math/Science Tutor up to Calculus and General Chemistry 2
For vertex form, we need to first determine the vertex, which is the coordinates (8, 64).
- Vertex form is a(x - h)2 + k where h is our x coordinate and k is the y coordinate and a is our value in the original form (the ax2). So this in vertex form is -(x - 8)2 + 64
- Part B
- Vertex is (8, 64): original determined it using -x2+16x so used -b/2a for the x coordinate so -16/-2 = 8. Plug in 8 to the function so y coordinate is 64.
- smaller x intercept (0,0) larger x intercept (16,0)
- -x2 + 16x = 0
- factor out "-x" so, -x(x-16) =
- set both factors to zero and solve for x so, x = 0,16
- Y intercept is (0,0) because the "c" value of the quadratic is the y intercept which in this problem is 0.
- Domain and Range
- Domain of any quadratic is (-∞,∞)
- Range is (-∞,64) because the max y value is 64 ( y coordinate of vertex)