Touba M. answered 04/27/22
B.S. in Pure Math with 20+ Years Teaching/Tutoring Experience
Hi,
x0 = -2----> x + 2
AND
f(x) = a0+ a1(x +2) +a2(x+2)^2 +a3(x+2)^3 +a4(x+2)^4 +....----> f(-2) = a0
Take derivative of given function and plug in x = -2
y' - 5xy = 0 ------> f'(-2) +10y = 0 ----> f'(-2)= -10 a0
y'' -5y -5xy' = 0 -
f"(-2) -5y +10y' = 0 ----> f"(-2) = 5y -10y'= 5 a0 -10(-10a0) =>y"=f"(-2)= 105 a0
y"' - 5y' -5y' -5xy" = 0 ---> y"' - 10y' -5xy" = 0 the same method
plug in y', y" and x = -2 you will have:
y"' - 10y' -5xy" = 0 ----> y"' = -1150 a0
y"" -10y" -5y" -5xy"' = 0 ---> y"" -15y" -5xy"' = 0 one more time plug in all above information then you will have:
y"" -15y" -5xy"' = 0 ---> y"" = 13075 a0
Now f(x) = a0+ a1(x +2) +a2(x+2)^2 +a3(x+2)^3 +a4(x+2)^4 +....
find f'(x) , f"(x), f'"(x) and f""(x)
THEN plug in x = -2 and plug in f'(x) , f"(x), f'"(x) and f""(x) that you will have
f'(-2)= -10 a0 =f'(-2) = a1
f"(-2)= 105 a0 =f"(-2) = 2a2 ====> a2 = 105/2 a0
y"' = -1150 a0 = f'"(-2)= 6a3 ====> a3= -1150/6 a0
y"" = 13075 a0 = f""(-2) =24 a4====> a4= 13075/24 a0
Now all coefficients plug in to the function f(x)
f(x) = a0 -10 a0 (x +2) +105/2 a0(x+2)^2 -1150/6 a0(x+2)^3 +13075/24a0(x+2)^4
I hope it is useful, please one more time check all parts I hope no mistake.
Minoo