We can be sure only that:
(c) lim q(x)√(p(x)) = ∞
x→a
For (a) and (b) limits can be any positive numbers.
Explanation. Famous calculus facts:
lim (1 + 1/x)x = e, lim (1 + 1/x)kx = ek
x→∞ x→∞
lim exp(kx)^(1/x) = ek (take a logarithm to verify this)
(a) Let h(x) = 1 + (x-a)2 , p(x) = k/(x-a)2
Replace x with y = 1/(x-a)2
lim h(x)^p(x) = lim (1 + 1/y)ky = ek
x→a x→∞
(b) Let p(x) = exp(k/(x-a)2), f(x) = (x-a)2
Replace x with y = 1/(x-a)2
lim p(x)^f(x) = lim exp(ky)^(1/y) = ek
x→a x→∞

Vitaliy V.
11/06/21