Let P be the length of the perimeter..
Then if le let x be the length of one o the two equal sized sizes , then the length of the base of the
isosceles triangle y = P - 2 x.
Then the height of the triangle H = [ x2 - ( P - 2 x )2 /4 ] 1/2
A ( x ) = (1/2) ( P - 2 x ) [ x2 - ( P - 2 x )2 /4 ] 1/2 = (1/4) ( P - 2 x ) [4 x2 - ( P - 2 x )2 ] 1/2.
A ( x ) = (1/4) ( P - 2 x ) [4 P x - P2 ] 1/2.
To maximize A ( x ) suffices to maximize Q (x ) = ( P - 2 x ) [ 4 P x - P2] 1/2.
Then Q' (x ) ={ ( P - 2 x ) [4 P x - P2 ] 1/2.}'
=-2 [4 P x - P2 ] 1/2.+ (P - 2 x )[ 2P / [4 P x - P2 ] 1/2 ]
= { -2 [4 P x - P2 ] + 2 P2 - 4 P x } / { [4 P x - P2 ] 1/2 }
Q' (x ) = 0 ⇔ [-2(4 P x - P2) ] + 2 P2 - 4 P x = 0 ⇔ -12 P x + 4 P2 =0 12 P x = 4 P2 x = P / 3
Q' (x ) > 0 if x < P / 3 and Q' (x ) < 0 if x > P / 3 Therefore at x = P / 3 Q (x ) attains maximum so A (x).
Notice that x = P / 3 .
Hence of all isosceles triangles with fixed perimeter the equilateral has the maximum area.