The surface 4 x e y z + x z2 - 7 x3 y = 5 is a level surface of the function
F ( x, y , z ) = 4 x e y z + x z2 - 7 x3 y .
Therefore the normal vector of the tangent plane at the point Ω ( 1, 0, 1 )
is a scalar multiple of the gradient vector of F at the point Ω.
∇ F = [ ∂F / ∂x ] i + [ ∂F / ∂y ] j + [ ∂F / ∂z ] k
∇ F = [ 4 e y z + z2 - 21 x2 y] i + [ 4 x z e y z - 7 x3 ] j +[ 4 x y e y z + 2 x z ] k
∇ F( 1,0,1) = 5 i -3 j + 2 k
Hence the equation of the tangent plane is
5 ( x -1 ) -3 y + 2 ( z - 1 ) = 0