In a nutshell
r(t)=(3 sin t) i+(t^4−3 cos t) j+(4 e^2t) k, t = 0
r'(t)=(3 cos t) i+(4t3 + 3 sin t) j+(8e2t) k,
The directing vector of the tangent line at t = 0 is
u = r'(0) = < 3 , 0 ,8 >
and therefore the parametric equations of the tangent line at the point P (0 , -3, 4 ) are
x = 3t
y = -3
z = 4 +8 t