x y3 = 8/5 + 8y2/5
d/ d t [ x y3 ] = d/d t[ 8/5 + 8y2/5 ]
y3 d x/ d t + 3x y2 d y/ d t = (16y / 5) d y/d t
y3 d x/ d t = (16y / 5) d y/d t - 3x y2 d y/ d t
[ (16y / 5) - 3x y2 ] d y/ d t = y3 d x/ d t and since y ≠ 0
d y/ d t = { y2 / [ (16 / 5) - 3x y ] } d x/ d t
d y/ d t = {5 y2 / [ (16 - 15 x y ] } d x/ d t
d y/ d t = {5 ·4 / [ (16 - 15 ·1· 2 ] } ·6
d y/ d t = -60/7 units / sec and therefore the particle is falling at this instant