L ( x, y ) = ƒ ( a , b ) + ƒx( a, b) [ x - a ] + ƒy(a,b) [ y - b ]
( a, b ) = ( 5 , -5 )
ƒx(x,y) = -3x ( 129 -3 x2 - 2 y2 ) -1/2 ⇒ ƒx(5,-5) = -15 /2
ƒy(x,y) = -2x ( 129 -3 x2 - 2 y2 ) -1/2 ⇒ ƒy(5,-5) = 5
L ( x, y ) = ƒ ( a , b ) + ƒx( a, b) [ x - a ] + ƒy(a,b) [ y - b ]
L ( x, y ) = 2 - 15 /2 [ x -5 ] + 5 [y +5 ]
L ( x, y ) = -15 /2 [ x ] + 5 [y ] + 129 /2
Now using the linearization at ( 5, -5) we get the expected value of 2
Let us use it to approximate L (4.9, -4.9 ) = 3.25
when the actual value of the function f at (4.9, -4.9 ) is 2.9916