V = ∫0√63 ∫063-x^2 ∫063-y d z d y d x
∫0√63 ∫063-x^2 [ 63−y ] d y d x
∫0√63 { [ 63y −y2/2 ] |063-x^2 } d x
∫0√63 [ 63( 63−x2 ) −(1/2) ( 63−x2 )2 ] d x = [ 23814√7 ] / 5
M P.
asked 08/08/21Find the volume of the solid above the region D={(x,y): 0<=x<= √63, <=y<= 63-x²} and between the planes z=63-y, z=0.
V = ∫0√63 ∫063-x^2 ∫063-y d z d y d x
∫0√63 ∫063-x^2 [ 63−y ] d y d x
∫0√63 { [ 63y −y2/2 ] |063-x^2 } d x
∫0√63 [ 63( 63−x2 ) −(1/2) ( 63−x2 )2 ] d x = [ 23814√7 ] / 5
Get a free answer to a quick problem.
Most questions answered within 4 hours.
Choose an expert and meet online. No packages or subscriptions, pay only for the time you need.