APPROACH ONE USING THE DEFINITION
The ∫CF • d r = ∫t=2t=0 < 3 t2 + 4 t3 , 4 t2 + 6 t3 > • < 2 t, 3 t2 > d t =
∫t=2t=0 [ 20 t4 + 6 t3 + 18t5] d t = 344.
APPROACH TWO USING THE FUNDAMENTAL THEOREM FOR LINE INTEGRALS
Let us find the potential function of the given vector field.
The given vector field is a conservative one
∂ P / ∂ y = ∂ / ∂y [ 3 x +4 y ] = 4 and ∂ Q / ∂ x = ∂ / ∂ x [4 x +6 y ]= 4.
That i s ƒ[x, y] = ∫ [ 3x + 4y] d x = 3x2/2 +4xy +h[y]
∂ ƒ/ ∂ y = 4x + h' [ y ] = 4x + 6y ⇒ h' [ y ] = + 6y ⇒ h[y] = 3y2
ƒ[x, y] = = 3x2/2 +4xy +3y2 . ∇ ƒ = <3x+4y,4x+6y>
Then ∫CF • d r = ∫C ( ∇ ƒ ) • d r = ∫02 d/ dt{ ƒ[r(t)]} d t=
ƒ[r(2)] - ƒ [r(0)] =3/2 42 + (4 ) ( 4) ( 8) + 3( 64) = 344