Consider the vector field F=<x^3*y^4,x^4*y^3> = < P [x ,y] ,Q [x , y ] >
Use your answer to evaluate
∫CF⋅dr
along the curve C:
r(t)=6cos(t)i+6sin(t)j, 0≤t≤π4
∂ P / ∂ y = ∂ Q / ∂ x = 4 x3 y3 hence the vector field is a conservative one.
Therefore ∃ a function ƒ(x , y ) such that ∇ƒ = F ( x, y )
ƒ(x, y ) = ∫ x3 y4 d x = (1/4) x4 y4 + h ( y )
∂ ƒ / ∂ y = x4 y3 + h' ( y ) =x4 y3 ⇒ h' ( y ) = 0 ⇒ h ( y ) = ξ , where ξ is a constant.
Then ∫CF• d r = ∫0π/4 ∇ƒ( r(t)) • r'(t) d t = ƒ( r(π/4)) - ƒ( r(0)) = 26244