Find the first three non-zero terms of the Maclaurin series for f(x)=ln(1−x5)
f(x)=ln(1−x5) = - ∫[5x4] / [ 1- x5 ] dx = - 5 ∫x4 [ 1+ x5 + x10 + x15 + x20 +···] dx =
= - 5 ∫ [ x4 + x9 + x14 + x19 +....] dx = -5 [ x5/5 + x10/ 10 + x15/15 + x20 /20 + ....] =
= - [ x5 + x10/ 2 + x15/3 + x20 /4 + ....] =
= - ∑n=1 x5n/n