Let's parametrize the line segment that the two given A (0,-5,5) and B (2,-11,1)points define.
The directing vector AB = < 2, -6 ,-4 > or any scalar multiple of AB , say conviniettly
u =< 1 ,- 3 , -2 >
Then the parametric equations of the line segment are
x = x(t) = t
y = y(t) = -5 - 3t
z = z(t) = 5 - 2t.
Then ∫C ƒ (x ,y ,z ) d s = ∫t=1t=0 [ t2 ( 5 -2 t ) ] [ (dx/dt)2 + (dy/dt)2 + (dz/dt)2 ]1/2dt =
∫t=1t=0 [ t2 ( 5 -2 t ) ] [ ( 1)2 + (-3)2 + (-2)2 ]1/2dt
∫t=1t=0 [ 5t2 -2 t3 ] [ ( 1)2 + (-3)2 + (-2)2 ]1/2dt
∫t=1t=0 [ 5t2 - 2t3] [ ( 14)]1/2dt
√14 ∫t=1t=0 [ 5t2 - 2t3]dt
√14 [ 5/3 t3 - 1/2 t4 ]|10
√14 [ 10/6 - 3/6 ] = 7√14/6