∫CF • r = ∫t=2pit=0 F ( r (t ) ) • r' ( t ) d t where r (t ) = < 4 cos t , 4 sin t >
∫CF • r = ∫t=2pit=0 F ( r (t ) ) • r' ( t ) d t = ∫t=2pit=0 F < 4 cos t - 4 sin t , 4 cos t + 8 sin t > • < -4 sin t , 4 cos t > dt
= ∫t=2pit=0 [-4sint ( 4 cos t - 4 sin t) +4 cost[4cos t + 8 sin t d t
= ∫t=2pit=0 [-16sint cos t + 16 sin 2t +16 cos2t+ 32 sin t cos t ]d t
∫t=2pit=0 [16sint cos t + 16]d t ∫t=2pit=0 [16sint cos t ] d t +∫t=2pit=0 [ 16]d t = 32π