Let x +y =u and x-y =v
Under this transformation the triangular region Ω is mapped into the triangular D region bounded by the lines
u = v , v= -u and u =1 in the uv-plane.
x = [ u+v ] /2 and y = [ u-v] /2
Then the Jacobian ∂( x, y ) / ∂ ( u,v ) =- 1 / 2
Hence ∫u=0u=1 ∫v=uv=-u ƒ( u) | -1 /2 | d v d u =
∫u=0u=1 [ v ƒ( u) ( 1 /2 ) ] |v=uv=-u d u
∫u=0u=1 2uƒ( u) ( 1 /2 ) d u
∫u=0u=1 u ƒ( u) d u
Adam B.
07/26/21