Let x = 2u and y = 4v∂
Then ∂x/∂u =2 ∂x/∂v=0
∂y/∂u =0 ∂y/∂v=4
That is the Jacobian ∂(x,y) ∂/ ∂(u,v)= 8
Hence ∫∫Rx2dA = ∫∫Ω4u28du dv where Ω = { (u,v)∈ℜ2 | u2+v2≤1} Now let u=rcosθ and v= r sinθ
Then ∫∫Rx2dA = ∫∫Ω4u28du dv = ∫ θ=2π θ=0 ∫r=1 r=032r2cos2θ dr dθ= 32/3 ∫ θ=2π θ=0[r3cos2θ ] |01dθ=
= 32/3 ∫ θ=2π θ=0[cos2θ ]dθ = 32/6 ∫ 0π2(1+cos2θ)dθ = 16/3[ θ +1/2 sin2θ] 02π= 32π/3