Using Spherical Coordinates
The radius of the sphere is √13/2 .
The projection of the intersection of the cone and the sphere on the xy-plane is a circle with radius √(13/8).
That is sinφ = [√(13/8)] / [ √13/2 ] = √2/2 Hence φ = π/4.
Then the mass m= ∫θ=0θ=2π ∫φ=0 φ=π/4 ∫ρ=0 ρ=√13/2 ρ⋅ρ2sinφ dρ dφ dθ〉
m = ∫θ=0θ=2π ∫φ=0 φ=π/4 ∫ρ=0 ρ=√13/2 ρ3sinφ dρ dφ dθ = 1/4 ∫θ=0θ=2π ∫φ=0 φ=π/4 [ρ4] |0 √13/2 sinφ dφ dθ=
169/64 ∫θ=0θ=2π ∫φ=0 φ=π/4 sinφ dφ dθ = 169/64 ∫θ=0θ=2π[ - cosφ ] |0π/4d θ = [ 169( 2 - √2 )π]/64