The projection of the intersection of the paraboloid with the plane z=1 on the xy-plane is the circle
x2 + y2= 11/3
The mass m is equal to
m = ρ ∫θ=0θ=2π ∫r=0 r= √(11/3) ∫z=11z=3r^2 rdz dr dθ =
= 121πρ / 6
Myz = ρ ∫θ=0θ=2π ∫r=0 r= √(11/3) ∫z=11z=3r^2 x rdz dr dθ =
Myz = ρ ∫θ=0θ=2π ∫r=0 r= √(11/3) ∫z=11z=3r^2 r2cosθdz dr dθ = 0
Mxz = ρ ∫θ=0θ=2π ∫r=0 r= √(1/3) ∫z=1z=3r^2 y rdz dr dθ
Mxz = ρ ∫θ=0θ=2π ∫r=0 r= √(1/3) ∫z=1z=3r^2 r2sinθdz dr dθ =0
Mxy = ρ ∫θ=0θ=2π ∫r=0 r= √(11/3) ∫z=11z=3r^2 z rdz dr dθ =
Mxy = ρ ∫θ=0θ=2π ∫r=0 r= √(11/3) ∫z=11z=3r^2 z rdz dr dθ = π(113)ρ /9
Then the center of mass is at (x,y,z) = ( Myz/m , Mxz/m, Mxy/m ) = ( 0, 0, 66/9 )