Using Cylindrical Coordinates.
The projection of the intersection of the two circular paraboloids on the xy-plane is the circle x2 + y2 = 13/8
Then the mass of the solid is equal
m= ∫θ=0 θ=2π ∫r=0 r= √(13/8) ∫z=r^2 z= 13/4-r^2 r2 dz dr dθ =
m = ∫θ=0 θ=2π ∫r=0 r= √(13/8)[ r2z ] |r^213/4-r^2 dr dθ =
m = ∫θ=0 θ=2π ∫r=0 r= √(13/8)[ r2 [ 13/4 -2r2 ] dr dθ =
m = ∫θ=0 θ=2π ∫r=0 r= √(13/8)[ r2 13/4 -2r^4 ] dr dθ =
m = ∫θ=0 θ=2π [ 13r3 /12 - 2r5/5] |0√(13/8) dθ =
m = ∫θ=0 θ=2π [ 13/12 13/8 √(13/8)- 169 /160 √(13/8)dθ
m = 238π( 1/96- 1/160) √(13/8)