The projection of the solid on the xy-plane is the parabola y = 13/2 −x2/2
Then the given integral is ∫x=13^0.5x=0 ∫y=13/2-x^2/2y=0 ∫z=13-2yz=0 y dzdydx=
∫x=13^0.5x=0 ∫y=13/2-x^2/2y=0 [yz]|0z=13-2ydydx =
∫x=13^0.5x=0 ∫y=13/2-x^2/2y=0[13y-2y2] dydx =
∫x=13^0.5x=0 [13y2/2− 2y3/3]| y=13/2-x^2/2y=0dx
∫x=13^0.5x=0[ 13/2( 13/2−x2/2)2−(2/3) ( 13/2−x2/2)3]dx=
41743√13/420