V(t) = ∫ a(t) dt =∫<3t,6sint,cos4t>dt = < 3t2/2 +κ, - 6cost + λ , ((sin4t)/4) +μ >
and v(0)= < − 2 , 4, 2 > then
- 3t2/2 +κ = −2 , for t=0 hence κ = − 2
- 6cost + λ = 4 , for t=0 then λ = − 2
- ((sin4t)/4) +μ =2 , for t=0 therefore μ =2
This means V(t) = ∫ a(t) dt = < 3t2/2 +κ, - 6cost + λ , ((sin4t)/4) +μ > = < 3t2/2 −2, - 6cost −2 , ((sin4t)/4) +2 >
Or equivalently V(t) = < 3t2/2 −2, - 6cost −2 , ((sin4t)/4) +2 >
Now r(t) = ∫ V(t) dt = ∫ < 3t2/2 −2, - 6cost −2 , ((sin4t)/4) +2 > dt =
= < t3/2 −2t +φ , −6 sint t − 2t ÷ ξ , - ((cos4t)/16) +2t ÷ψ > .
Then r(t)= < t3/2 −2t +φ , −6 sint t − 2t ÷ ξ , - ((cos4t)/16) +2t ÷ψ > . Also r(0) = <1 ,4 , −3 > .That means
- t3/2 −2t +φ = 1 for t=0 ⇒ φ = 1
- −6 sint t − 2t ÷ ξ=4 for t=0 ⇒ ξ=4 and
- - ((cos4t)/16) +2t ÷ψ = −3 for t=0 ⇒ -1/16 ÷ψ = −3 ⇒ ÷ψ = −3 + 1/16 ⇒ ψ = −47/16
Finally r(t)= < t3/2 −2t +1 , −6 sint t − 2t ÷ 4, - ((cos4t)/16) +2t − 47/16 >