
Bradford T. answered 05/05/21
Retired Engineer / Upper level math instructor
1) y' + 3y = e-3x
μ(x) = e∫3dx = e3x
e3xy' + 3e3xy = e3x-3x = 1
(e3xy)' = 1
e3xy = x + C
y = (x+C)/e3x
2) y' + ycot(x) = csc(x)
μ(x) = e∫cot(x)dx = eln|sin(x)|=sin(x)
sin(x)y' + y cos(x) = 1
(sin(x)y)' = 1
sin(x)y = x+C
y = (x+C)/sin(x)
3) x2y' + xy = x+1
y' +y/x = 1/x + 1/x2
μ(x) = e∫dx/x = eln|x| = x
xy'+ y = 1+1/x
(xy)' = 1+1/x
xy = x+ln|x|+ C
y = 1 + (ln|x|+C)/x
4) y'-3y/(x+1) = (x+1)4
μ(x) = e∫-3/(x+1)dx = eln|(x+1)^-3| = 1/(x+1)3
y'/(x+1)3-3y/(x+1)4 = (y/(x+1)3)' = x+1
Integrating both sides:
y/(x+1)3 = x2/2+x+C
y = (x2/2+x+C)(x+1)3
Sekou F.
Thank you so much for the help.05/08/21