Joel L. answered 04/29/21
MS Mathematics coursework with 20+ Years of Teaching Experience
Given: f(x) = 2𝑥3+ 5𝑥 − 3, find the derivative using definition of derivative.
The definition of derivative of f(x) denoted by f'(x) is:
f'(x) = limh→0 [f(x+h)-f(x)]/ h
𝑓(𝑥+h) = 2(𝑥+h)3 + 5(𝑥+h) − 3
= 2𝑥3+6x2h+6xh2+2h3 + 5𝑥+5h − 3
Plugin the value of f(x+h) and f(x) to the formula:
∴f '(x) = limh→0 [(2𝑥3+6x2h+6xh2+2h3 + 5𝑥+5h − 3)-(2𝑥3+ 5𝑥 − 3)]/h
Remove the parenthesis and combine like terms:
f '(x) = limh→0 (2𝑥3+6x2h+6xh2+2h3 + 5𝑥+5h − 3-2𝑥3 -5𝑥 + 3)/h
f '(x) = limh→0 (6x2h+6xh2+2h3 +5h)/h
Factor out h and reduce rational expression by canceling h:
f '(x) = limh→0 h(6x2+6xh+2h2 +5)/h
f '(x) = limh→0 (6x2+6xh+2h2 +5)
Plugin h = 0 to simplify limits:
f '(x) = 6x2+6x(0)+2(0)2 +5
f '(x) = 6x2 +5