
William W. answered 04/19/21
Experienced Tutor and Retired Engineer
f '(x) = ∫f ''(x) dx
So f '(x) = ∫(9e3x + 4cos(2x))dx = 3e3x + 2sin(2x) + C
Since f′(0) = 13 then:
13 = 3e3(0) + 2sin(2•0) + C
13 = 3(1) + 2(0) + C
C = 10
So f '(x) = 3e3x + 2sin(2x) + 10
Integrating again to get f(x):
f(x) = ∫f '(x) dx = ∫(3e3x + 2sin(2x) + 10)dx = e3x - cos(2x) + 10x + C
Since f(0) = 3 we can say:
3 = e3(0) - cos(2•0) + 10(0) + C
3 = 1 - 1 + 0 + C
C = 3
So f(x) = e3x - cos(2x) + 10x + 3