Bradford T. answered 03/27/21
Retired Engineer / Upper level math instructor
Let x = price of a pair socks, y = price of a shirt and z = price of one pair slacks.
x+y+z=1500
2x-3y+3z=800
3x-y+2z=1300
Since this is Linear Algebra, let's put this into a matrix
[1 1 1 1500]
[2 -3 3 800]
[3 -1 2 1300]
R2 = R2-2R1
R3 = R3-3R1
[1 1 1 1500]
[0 -5 1 -2200]
[0 -4 -1 -3200]
R2 = R2/5
[1 1 1 1500]
[0 -1 1/5 -440]
[0 -4 -1 -3200]
R3 = R3 -4R2
[1 1 1 1500]
[0 -1 1/5 -440]
[0 0 -9/5 -1440]
R3 = -5/9R3
[1 1 1 1500]
[0 -1 1/5 -440]
[0 0 1 800]
Back substituting
z = 800
-y + 160 = 440 --> y = 600
x + 600 + 800 = 1500 --> x = 100
Socks are P100.00
Shirts are P600.00
Slacks are P800.00