
Yefim S. answered 10/13/20
Math Tutor with Experience
∫2∞1/xplnxdx = lim a→∞∫2a1/xplnxdx = lim a →∞ [(x-p+1/(-p+1)lnx2a) - ∫2a(x-p+1/(- p+1)·1/xdx\] =
lim a→∞[a-p+1/(-p + 1)lna - 2-p+1/(-p +1)ln2 - (x-p+1)/(-p+1)22a)] = lim a→∞[a-p + 1/(-p+1)lnp -2-p +1/(-p+1)ln2 -
a-p+1/(-p+1)2 + 2-p+1/(-p+1)2]. We see that this limit exis if - p + 1 < 0, p > 1 and integral converges to
∫2∞1/xplnxdx = 2-p+1/(-p+1)(1/(-p + 1) - ln2)