
Housney A. answered 06/05/20
Experienced Python/Math/Engineering Tutor
Hi Armed,
This problem can be made easy if you complete the square of (ss + 2s + 2) and then apply the shift rule.
F(s) = 1 / [s (ss + 2s + 2)] = 1 / [s (ss + 2s + 1 + 1)] = 1 / [s ((s + 1)2 + 1 )]
Taking the inverse Laplace of both sides, we get:
f(t) = L-1 {1 / [s ((s + 1)2 + 1 )]} = e-t L-1 {1 / [(s - 1) (s2 + 1 )]}
Now, we can use partial fraction on 1 / [(s - 1) (s2 + 1 )], or do some algebraic manipulations (easier in this case):
1 / [(s - 1) (s2 + 1 )] = (1 / 2) [ [1 / (s - 1)]- [ (s + 1) / (s2 + 1)] ] = (1 / 2) [ [1 / (s - 1)]- [ (s / (s2 + 1)] - [1 / (s2 + 1)] ]
f(t) = e-t L-1 {(1 / 2) [ [1 / (s - 1)]- [ (s / (s2 + 1)] - [1 / (s2 + 1)] ] } = (1/2) e-t [et - cos t - sin t]
f(t) = (1/2) [1 - e-t (cos t + sin t)]