A. Rocket splashes down after 35.5127 seconds
B. Rocket peaks at 1635.1939 ft
The numbers above are rounded
Your function is in the form a of quadratic
h(t) = -4.9t2 + 169t + 178
h is the height or y component
t is the horizontal or x component
You can write your function in terms of x and y if it helps
y = -4.9x2 + 169x + 178
y = ax2 + bx + c
when y = 0
0 = ax2 + bx + c
0 = -4.9x2 + 169x + 178
It can be factored using the Quadratic Formula
The coordinates for the vertex can obtained using -b/2a this gives the t or x coordinate
Then you plug this into to the equation to get h or y coordinate
For your function
h(t) = -4.9t2 + 169t + 178
at
h(0)
0 = -4.9t2 + 169t + 178
a = -4.9
b = 169
c = 178
(-b±SQRT(b2 - 4ac))/2a
(-169±SQRT(1692 - 4(178)(-4.9))/2(-4.9)
(-169±SQRT(28561 + 3488.8))/-9.8
(-169±SQRT(32049.8))/-9.8
-169±(179.0246)/-9.8
(-169 + 179.0246)/-9.8 = -1.0229 = t
(-169 - 179.0246)/-9.8 = 35.5127 = t
t cannot be negative
t = 35.5127 seconds
t = -1.0229 h = 0
t = 35.5127 h= 0
For the vertex which will give the maximum height for h
the horizontal component t is
-b/2a = -169/-9.8 = 17. 2449
h(17.2449) = -4.9(17.2449)2 + 169(17.2449) + 178
h = 1635.1938 ft
You can graph this at DESMOS.com to check the values.
You can plug the values into the equation to many decimal places.
-4.9(-1.022916257)2 + 169(-1.022916257) + 178 = 0
-4.9(1.046357669) + 169(1.022916257) + 178 = 0
-5.127152577 + -172.8728474 + 178 = 0
-178 + 178 = 0
I hope you find this useful if you have any questions send me a message.