Mark M. answered 05/05/19
Retired math prof. Very extensive Precalculus tutoring experience.
f"(x) = ∫f'''(x)dx = ∫cosxdx = sinx + C1
Since f"(0) = 4, we have sin0 + C1 = 4. So, C1 = 4
f"(x) = sinx + 4
f'(x) = ∫f"(x)dx = ∫(sinx + 4)dx = -cosx + 4x + C2
Since f'(0) = 8, -cos0 + 4(0) + C2 = 8. So, C2 = 9
f'(x) = -cosx + 4x + 9
f(x) = ∫f'(x)dx = ∫(-cosx + 4x + 9)dx = -sinx + 2x2 + 9x + C3
Since f(0) = 3, -sin0 + 2(0)2 + 9(0) + C3 = 3. So, C3 = 3
Therefore, f(x) = -sinx + 2x2 + 9x + 3