f(x) = g(x)*h(x) where g(x) = x^3 and h(x) = sqrt(x^2 - 8) = (x^2 - 8)^(1/2)
So you need the product rule:
f(x) = g(x)*h'x) + g'(x) * h(x)
g'(x) = 3*x^2 while h'(x) = (1/2)(x^2- 8)^(-1/2) (2x) = x(x^2-8)^(-1/2) <--- power rule and chain rule
The derivative is:
x^3 * (x)(x^2-8)^(-1/2) + (x^2-8)^(1/2) * (3x^2)
x^4(x^2-8)^(-1/2) + (3x^2)(x^2-8)^(1/2) <--- rule of exponents; commutative
(x^2-8)^(-1/2) ( x^4 - 3x^2(x^2-8)) = <--- factors out (x^2-8)^(-1/2)
Remember: m^(-1/2) - m^(1/2) = m^(-1/2) [ 1 - m]
you SUBTRACT the exponents when factoring
exponent 1/2 - -1/2 = 1/2+1/2 = 1
(x^2-8)^(-1/2) ( x^4 - 3x^4 - 24x^2)
(x^2 - 8)^(-1/2) ( -2x^4 - 24x^2)
(-2x^2)( (x^2 + 12)(x^2 - 8)^(-1/2)
OR
(-2x^2)(x^2 + 12)/ (x^2 - 8)^(1/2) =
(-2x^2)(x^2+12)/ sqrt(x^2 - 8)