The trigonometric form of -15+8i is, (8,15,17 is a right triangle)
-15+8i=17(cosθ+isinθ), where θ=arctan(-8/15).
The angle is in the second quadrant and cosθ=-15/17, sinθ=8/17.
For the square root we have
√(-15+8i)=√17(cosθ/2+isinθ/2)
cosθ/2=√((1+cosθ)/2)=√((2/17)/2)=1/√17sinθ/2=√((1-cosθ)/2)=√(32/17)/2=4/√17√(-15+8i)=±√17(1/√17+i4/√17)=±(1+4i)sorry for leaving out one square rootThis comes from z=reiθ+2kπ,z1/2=r1/2eiθ/2+kπ. k=1 is the only value to produce a different answer, the one with the minus sign.(±(1+4i))2=1-16+8i=-15+8i AT LAST!Apologies for my premature attempt at correction.
Michael F.
tutor
(1+4i)2=1-16+8i=-15+8i we are after the square root of -8+15i
Report
10/15/14
BG B.
10/15/14