Domain f = [2, ∞) Range f = [1, ∞)
Let y = f(x): y = 1 + √(x-2)
Switch x and y: x = 1 + √(y-2)
Solve for y: √(y-2) = x - 1
y - 2 = (x-1)2
y = (x-1)2 + 2 = f-1(x), where x≥ 1 [Since domain f-1(x) = Range f(x)]
y - 2 = (x-1)