
Peter I. answered 06/25/13
Tutoring for Scholastic Excellence in Business and Science
There are two parts to the question.
Only two possible scenarios: a) success or b) failure
Applying the binomial concept:
P(satisfaction) = 80% or 0.8; P(dissatisfaction) = 20% or 0.2
Therefore, P(9 or more satisfied persons) = P(9) + P(10) + P(11) + P(12)
1st part
= 12C9 * (0.8)^9 * (0.2)^3 + 12C10 * (0.8)^10 * (0.2)^2 + 12C11 * (0.8)^11 * (0.2)^1 + 12C12 * (0.8)^12 * (0.2)^ 0
= 0.2362 + 0.2835 + 0.2062 + 0.0687
= 0.7946 (1st part of the puzzle)
2nd part.
Solve for p(3, 4, 5, and 6 satisfied persons)
12C3*(0.8)^3 * (0.2)^9 + 12C4*(0.8)^4 * (0.2)^8 + 12C5*(0.8)^5 * (0.2)^7 + 12C6* (0.8)^6* (0.2)^6
= 0.00005767 + 0.00051904 + 0.0033219 + 0.0154995
= 0.01940