Mark M. answered 09/16/16
Tutor
4.9
(954)
Retired math prof. Very extensive Precalculus tutoring experience.
lim(x→π/4)[(sinx-cosx)/(tanx-1)] has the indeterminate form 0/0
= lim(x→π/4)[(sinx-cosx)/((sinx)/(cosx) - 1)]
= lim(x→π/4)[(sinx - cosx)/((sinx - cosx)/(cosx))]
= lim(x→π/4)[cosx] = cos(π/4) = √2/2
-----------------------------------------------------------------------------------
lim(x→π/2)(secx - tanx) = lim(x→π/2)[i/(cosx) - (sinx)/(cosx)]
= lim(x→π/2)[(1-sinx)/cosx] (has 0/0 form)
= lim(x→π/2)[(-cosx)/(-sinx)] = 0/1 = 0
(By L'Hopital's Rule)