I'm not sure how to approach this equation for Calculus.

I'm not sure how to approach this equation for Calculus.

Tutors, sign in to answer this question.

You need to add the fractions together:

(1/h){[1/(x+h)] - [1/x]} = (1/h){-h/[x(x+h)]} = -1/[x(x+h)]

Now you can apply the limit to the function above:

lim(h-->0) -1/[x(x+h)] = -1/(x^2)

DJ O. | 95th percentile Math Teacher95th percentile Math Teacher

Hello Kathryn,

I'm guessing you mean to put the second h in the denominator with the first x. Then we'll have lim_{h→0
}1/h[(1/(x+h) - (1/x)] = lim_{h→0} 1/h[-h/(x(x+h))] = lim_{h→0} -1/(x(x+h) and when we substitute 0 for h we get
**-1/x ^{2}, final answer.**

Hmmm, is the question find the limit of 1/x as x approaches zero and you have to use the formula limit of the limit of [f(0+h)-f(0-h)]/[(0+h)-(0-h)] as h approaches zero. This is a really difficult concept to learn as a beginner to calculus and one that often makes a lot more sense when you start learning what you are actually measuring is the same thing as a slope.

The formula [f(x+h)-f(x)]/[(x+h)-(x)] is actually just another version of the (y_{1}-y_{2})/(x_{2}-x_{1})

I mean, you can find the way to solve this one from the example above, but if you don't know what you are actually doing, it won't do you any good. You might want to search khan academy and introduction to limits and they have 3 or 4 5 minute videos which will help you with understanding what you are doing.

I might be reading your question wrong though, and if I am I apologize.

This limit is the definition of derivatives with f(x) = 1/x plugged in so it is f'(x) = -1/x^2

Already have an account? Log in

By signing up, I agree to Wyzant’s terms of use and privacy policy.

Or

To present the tutors that are the best fit for you, we’ll need your ZIP code.

Your Facebook email address is associated with a Wyzant tutor account. Please use a different email address to create a new student account.

Good news! It looks like you already have an account registered with the email address **you provided**.

It looks like this is your first time here. Welcome!

To present the tutors that are the best fit for you, we’ll need your ZIP code.

Please try again, our system had a problem processing your request.

Robert W.

MIT grad with 2 doctorate degrees tutors Science and Math courses

$17.50 per 15 min

View Profile >

Dom V.

Cornell Engineering grad specializing in advanced math subjects

$15 per 15 min

View Profile >

Michael P.

Enthusiastic Math Tutor, Mechanical Engineer, and Mentor

$22.50 per 15 min

View Profile >