
Jordan K. answered 10/18/15
Tutor
4.9
(79)
Nationally Certified Math Teacher (grades 6 through 12)
Hi Giovanni,
Lots of problems !!
We'll consider each one in turn:
Problem #1:
x2 - 3x - 88 = 0
x2 - 3x = 88
x2 - 3x + [(1/2)(-3)]2 = 88 + [(1/2)(-3)]2
x2 - 3x + 9/4 = 88 + 9/4
(x - 3/2)2 = 352/4 + 9/4
(x - 3/2)2 = 361/4
x - 3/2 = +/- √(361/4)
x - 3/2 = +/- (19/2)
x = 3/2 +/- (19/2)
x = (3+19)/2
x = 11
x = (3-19)/2
x = -8
Problem #2:
2x2 + 11x - 21 = 0
x2 + (11/2)x = 21/2
x2 + (11/2)x + [(1/2)(11/2)]2 = 21/2 + [(1/2)(11/2)]2
x2 + (11/2)x + 121/16 = 21/2 + 121/16
(x + 11/4)2 = 168/16 + 121/16
(x + 11/4)2 = 289/16
x + 11/4 = √(289/16)
x + 11/4 = +/- 17/4
x = -11/4 +/- 17/4
x = (-11+17)/4
x = 3/2
x = (-11-17)/4
x = -7
Problem #3:
z2 - 2z = 24
z2 - 2z + [(1/2)(-2)]2 = 24 + [(1/2)(-2)]2
z2 - 2z + 1 = 24 + 1
(z - 1)2 = 25
z - 1 = +/- 5
z = 1 +/- 5
z = 1 + 5
z = 6
z = 1 - 5
z = -4
Problem #4:
4x2 + 19x - 5 = 0
a = 4; b = 19; c = -5
discriminant: b2 - 4ac
b2 - 4ac = (19)2 - 4(4)(-5)
b2 - 4ac = 361 + 80
b2 - 4ac = 441 (roots are real and rational)
quadratic formula: x = [-b +/- √(b2 - 4ac)] / 2a
x = [-19 +/- √441] / 2(4)
x = (-19 +/- 21) / 8
x = (-19+21)/8
x = 1/4
x = (-19-21)/8
x = -5
Problem #5:
2w2 + 3w + 3 = 0
a = 2; b = 3; c = 3
discriminant: b2 - 4ac
b2 - 4ac = (3)2 - 4(2)(3)
b2 - 4ac = 9 - 24
b2 - 4ac = -15 (roots are imaginary and irrational)
quadratic formula: w = [-b +/- √(b2 - 4ac)] / 2a
w = [-3 +/- √(-15)] / 2(2)
w = (-3 +/- √15i) / 4
w = (-3+√15i)/4
discriminant: b2 - 4ac
b2 - 4ac = (3)2 - 4(2)(3)
b2 - 4ac = 9 - 24
b2 - 4ac = -15 (roots are imaginary and irrational)
quadratic formula: w = [-b +/- √(b2 - 4ac)] / 2a
w = [-3 +/- √(-15)] / 2(2)
w = (-3 +/- √15i) / 4
w = (-3+√15i)/4
w = (-3-√15i)/4
Problem #6:
6b2 - 39b + 45 = 0
a = 6; b = -39; c = 45
discriminant: b2 - 4ac
b2 - 4ac = (-39)2 - 4(6)(45)
b2 - 4ac = 1521 - 1080
b2 - 4ac = 441 (roots are real and rational)
discriminant: b2 - 4ac
b2 - 4ac = (-39)2 - 4(6)(45)
b2 - 4ac = 1521 - 1080
b2 - 4ac = 441 (roots are real and rational)
quadratic formula: b = [-b +/- √(b2 - 4ac)] / 2a
b = [-(-39) +/- √441] / 2(6)
b = (39 +/- 21) / 12
b = (39+21)/12
b = 5
b = [-(-39) +/- √441] / 2(6)
b = (39 +/- 21) / 12
b = (39+21)/12
b = 5
b = (39-21)/12
b = 3/2
b = 3/2
Thanks for submitting these problems & glad to help.
God bless, Jordan.