Imtiazur S. answered 09/12/13
Tutor
4.9
(691)
Tutor with masters degree and experience teaching Calculus
Let's start by defining the imaginary number i as √-1. Therefore √-1 = i, so √-2 = 2 . i etc.
(2√-3+3√-2) . (4√-3-5√-2) = (2 . √3 . i + 3 . √2. i) . (4 . √3 . i - 5 . √2 . i)
Using the long multiplication technique, we multiply each term of the first expression with each term in the second and add them up
This yields the following expression
(2 . √3 . i) . (4 . √3 . i) + (2 . √3 . i) . (- 5 . √2 . i) + (3 . √2. i) . (4 . √3 . i) + (3 . √2. i) . (- 5 . √2 . i)
(2 . √3 . i) . (4 . √3 . i) = 2 . 4 . √3 . √3 . i . i = 8 . 3 . (-1) = -24
(2 . √3 . i) . (- 5 . √2 . i) = 2 . (-5) . √6 . (-1) = 10√6
(3 . √2. i) . (4 . √3 . i) = 3 . 4 . √2 . √3 . i . i = -12√6
(3 . √2. i) . (- 5 . √2 . i) = 3 . (-5) . √2 . √2 . i . i = 30
So the answer is -24 + 10√6 - 12√6 + 30 = 6 - 2√6
This is a real, irrational number (not a complex number)