where r, the exponent of g, is?

and s, the exponent of y, is?

and k, the leading coefficient is?

where r, the exponent of g, is?

and s, the exponent of y, is?

and k, the leading coefficient is?

Tutors, please sign in to answer this question.

Buffalo, NY

Hi Jamey,

My first step would be to distribute the cube root, or power of 1/3. If we do so, we get the (15625)^(1/3)=25, g^(2/3), and y^1. Now, we have two of these multiplied together, so we have 25g^(2/3)y*25g^(2/3)y. Using your knowledge of integer and exponential multiplication, you can combine these two expressions by multiplication. From there simply read the expression to get the k, s, and r you're looking for.

Cheers,

Jess

Winder, GA

This is my solution for the problem.......

First lets ignore kg^{r}y^{s}

Next lets simplify the other side of the expression: (15625g^{2}y^{3})^{1/3} * (15625g^{2}y^{3})^{1/3}

Since the expressions are the same on either side of the multiplication sign, I am going to work with:

(15625g^{2}y^{3})^{1/3}

A fractional exponent is a short hand way of writing roots. In this particular instance we are dealing with a cubic root. So you can rewrite the expression like this:

3√15625g^{2}y^{3 }

Now is there anything that you can take the cubed root....yes

The cubed root of 15625 is 25 and the cubic root of y^{3} is y.

So that leaves you with the expression:

25y 3√g^{2}

If you transform the cubed root of g^{2} to a fractional exponent you get:

25yg^{2/3}

Now lets put that back into the expression:

25yg^{2/3} * 25yg^{2/3}

or another way to write it is:

(25yg^{2/3})^{2}

So now lets square the expression:

625y^{2}g^{4/3}

and rearrange:

625g^{4/3}y^{2}

So the answers are:

k=625

r=4/3

s=2

Romina A.

Knowledgeable tutor in Spanish, Biology, Anatomy & Physiology and Math

Harrison, NJ

5.0
(168 ratings)

Mary F.

Highly Qualified Math Teacher, Kaplan Trained

Bronxville, NY

5.0
(51 ratings)

Amaan M.

Math/Economics Teacher

New York, NY

5.0
(68 ratings)

- Math 8553
- Algebra 1 3720
- Algebra 2 3144
- Word Problem 4702
- Algebra Help 937
- Math Help 4831
- Algebra Word Problem 2297
- College Algebra 973
- Word Problems 1367
- Equations 640

## Comments